Skip to main content
Log in

Lagrangian eddies in the Northwestern Pacific Ocean

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Lagrangian eddies in the western Pacific Ocean are identified and analysed based on Maps of Sea Level Anomaly (MSLA) data from 1998 to 2018. By calculating the Lagrangian eddy advected by the AVISO velocity field, we analyzed the variations in Lagrangian eddies and the average transport effects on different time scales. By introducing the Niño coefficient, the lag response of the Lagrangian eddy to El Niño is found. These data are helpful to further explore the role of mesoscale eddies in ocean energy transfer. Through normalized chlorophyll data, we observed chlorophyll aggregation and hole effects caused by Lagrangian eddies. These findings demonstrate the important role of Lagrangian eddies in material transport. The transportation volume of the Lagrangian eddy is calculated quantitatively, and several major transport routes have been identified, which helps us to more accurately and objectively estimate the transport capacity of Lagrangian eddies in the western Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The El Niño data are obtained from the National Climate Center (https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices). The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abernathey R, Haller G. 2018. Transport by lagrangian vortices in the eastern Pacific. Journal of Physical Oceanography, 48(3): 667–685.

    Article  Google Scholar 

  • Aksamit N O, Sapsis T P, Haller G. 2019. Machine-learning ocean dynamics from lagrangian drifter trajectories. arXiv preprint arXiv: 1909.12895.

  • AVISO Satellite Altimetry Data. 2020. Gridded sea level heights and derived variables. https://www.aviso.altimetry.fr/index.php?id=1271. Accessed on 2020-10-10.

  • Beron-Vera F J, Hadjighasem A, Xia Q, Olascoaga M J, Haller G. 2019. Coherent lagrangian swirls among submesoscale motions. Proceedings of the National Academy of Sciences of the United States of America, 116(37): 18251–18256.

    Article  Google Scholar 

  • Beron-Vera F J, Olascoaga M J, Haller G, Farazmand M, Triñanes J, Wang Y. 2015. Dissipative inertial transport patterns near coherent lagrangian eddies in the ocean. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8): 087412.

    Article  Google Scholar 

  • Blazevski D, Haller G. 2014. Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D: Nonlinear Phenomena, 273–274: 46–62.

    Article  Google Scholar 

  • Chelton D B, Gaube P, Schlax M G, Early J J, Samelson R M. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216.

    Article  Google Scholar 

  • Ding M R, Lin P F, Liu H L, Chai F. 2018. Increased eddy activity in the northeastern Pacific during 1993–2011. Journal of Climate, 31(1): 387–399.

    Article  Google Scholar 

  • Ding M R, Lin P F, Liu H L, Hu A X, Liu C Y. 2020. Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the northwestern Pacific. Scientific Reports, 10(1): 12791.

    Article  Google Scholar 

  • Dong C M, McWilliams J C, Liu Y, Chen D K. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294.

    Article  Google Scholar 

  • Hadjighasem A, Farazmand M, Blazevski D, Froyland G, Haller G. 2017. A critical comparison of Lagrangian methods for coherent structure detection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(5): 053104.

    Article  Google Scholar 

  • Hadjighasem A, Haller G. 2014. Geodesic transport barriers in Jupiter’s atmosphere: a video-based analysis. SIAM Review, 58(1): 69–89.

    Article  Google Scholar 

  • Haller G, Beron-Vera F J. 2012. Geodesic theory of transport barriers in two-dimensional flows. Physica D: Nonlinear Phenomena, 241(20): 1680–1702.

    Article  Google Scholar 

  • Haller G, Beron-Vera F J. 2013. Coherent lagrangian vortices: the black holes of turbulence. Journal of Fluid Mechanics, 731: R4.

    Article  Google Scholar 

  • Haller G, Daniel K, Florian K. 2018. Material barriers to diffusive and stochastic transport. Proceedings of the National Academy of Sciences of the United States of America, 115(37): 9074–9079.

    Article  Google Scholar 

  • Haller G, Hadjighasem A, Farazmand M, Huhn F. 2016. Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795: 136–173.

    Article  Google Scholar 

  • Haller G, Yuan G. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3–4): 352–370.

    Article  Google Scholar 

  • Haller G. 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47: 137–162.

    Article  Google Scholar 

  • Harrison C S, Siegel D A, Mitarai S. 2013. Filamentation and eddy-eddy interactions in marine larval accumulation and transport. Marine Ecology Progress Series, 472: 27–44.

    Article  Google Scholar 

  • Hasunuma K, Yoshida K. 1978. Splitting of the subtropical gyre in the western North Pacific. Journal of Oceanography, 34(4): 160–172.

    Article  Google Scholar 

  • Hogan P J, Hurlburt H E. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea models with to \({\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 8$}}^\circ \;\text{to}\;{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {64}$}}^\circ \) resolution. Journal of Physical Oceanography, 30(10): 2535–2561.

    Article  Google Scholar 

  • Huhn F, van Rees W M, Gazzola M, Rossinelli D, Haller C, Koumoutsakos P. 2015. Quantitative flow analysis of swimming dynamics with coherent lagrangian vortices. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8): 087405.

    Article  Google Scholar 

  • Katsanoulis S, Farazmand M, Serra M, Haller G. 2020. Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows. Physical Review Fluids, 5(2): 024701.

    Article  Google Scholar 

  • Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K. 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western north pacific. Journal of Oceanography, 68(1): 63–77.

    Article  Google Scholar 

  • Lin P F, Chai F, Xue H J, Xiu P. 2014. Modulation of decadal oscillation on surface chlorophyll in the kuroshio extension. Journal of Geophysical Research: Oceans, 119(1): 187–199.

    Article  Google Scholar 

  • Lin P F, Liu H L, Ma J, Li Y W. 2019. Ocean mesoscale structure-induced air-sea interaction in a high-resolution coupled model. Atmospheric and Oceanic Science Letters, 12(2): 98–106.

    Article  Google Scholar 

  • Lin P F, Ma J F, Chai F, Xiu P, Liu H L. 2020. Decadal variability of nutrients and biomass in the southern region of kuroshio extension. Progress in Oceanography, 188: 102441.

    Article  Google Scholar 

  • Liu Y J, Chen G, Sun M, Liu S, Tian F L. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743–2754.

    Article  Google Scholar 

  • Mizuno K, White W B. 1983. Annual and interannual variability in the Kuroshio current system. Journal of Physical Oceanography, 13(10): 1847–1867.

    Article  Google Scholar 

  • National Climate Centre. 2020. ENSO. https://cmdp.ncc-cma.net/pred/cn_enso.php?product=cn_enso_nino_indices. Accessed on 2020-10-10.

  • NRT 3.0 exp product. This dataset was produced by SSALTO/DUACS and distributed by AVISO+ with support from CNES, developed and validated in collaboration with E. Mason at IMEDEA. https://www.aviso.altimetry.fr/.

  • Onu K, Huhn F, Haller G. 2015. LCS tool: a computational platform for lagrangian coherent structures. Journal of Computational Science, 7: 26–36.

    Article  Google Scholar 

  • Peacock T, Haller G. 2013. Lagrangian coherent structures: the hidden skeleton of fluid flows. Physics Today, 66(2): 41–47.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2005. Variability of the kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103.

    Article  Google Scholar 

  • Serra M, Haller G. 2017. Efficient computation of null geodesics with applications to coherent vortex detection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199): 20160807.

    Article  Google Scholar 

  • Su Z, Wang J B, Klein P, Thompson A F, Menemenlis D. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775.

    Article  Google Scholar 

  • Sun B W, Liu C Y, Wang F. 2020. Eddy induced SST variation and heat transport in the western North Pacific Ocean. Journal of Oceanology and Limnology, 38(1): 1–15.

    Article  Google Scholar 

  • Wang Y, Beron-Vera F J, Olascoaga M J. 2016. The life cycle of a coherent Lagrangian Agulhas ring. Journal of Geophysical Research: Oceans, 121(6): 3944–3954.

    Article  Google Scholar 

  • Wang Y, Olascoaga M J, Beron-Vera F J. 2015. Coherent water transport across the South Atlantic. Geophysical Research Letters, 42(10): 4072–4079.

    Article  Google Scholar 

  • Xu L X, Li P L, Xie S P, Liu Q Y, Liu C, Gao W D. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505.

    Article  Google Scholar 

  • Yang G, Wang F, Li Y L, Lin P F. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925.

    Article  Google Scholar 

  • Zhang C, Liu H L, Li C Y, Lin P F. 2019. Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. International Journal of Climatology, 39(13): 5124–5139.

    Article  Google Scholar 

  • Zhang C, Liu H L, Xie J B, Li C Y, Lin P F. 2020. Impacts of increased SST resolution on the north pacific storm track in ERA-interim. Advances in Atmospheric Sciences, 37(11): 1256–1266.

    Article  Google Scholar 

  • Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Chen.

Additional information

Supported by the National Natural Science Foundation of China (No. 42030406), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0102-8), the Ministry of Science and Technology of China (No. 2016YFC1401008), the ESA-NRSCC Scientific Cooperation Project on Earth Observation Science and Applications: Dragon 5 (No. 58393), and the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (No. KF-2020-05-085)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Tian, F., Yang, X. et al. Lagrangian eddies in the Northwestern Pacific Ocean. J. Ocean. Limnol. 40, 66–77 (2022). https://doi.org/10.1007/s00343-021-0392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-0392-7

Keyword

Navigation